ENERGY INTELLIGENCE FOR MANUFACTURING

Ω = [0:+∞[

.....

lul.

Leveraging Al to save Energy in Manufacturing

09 16 20

.....

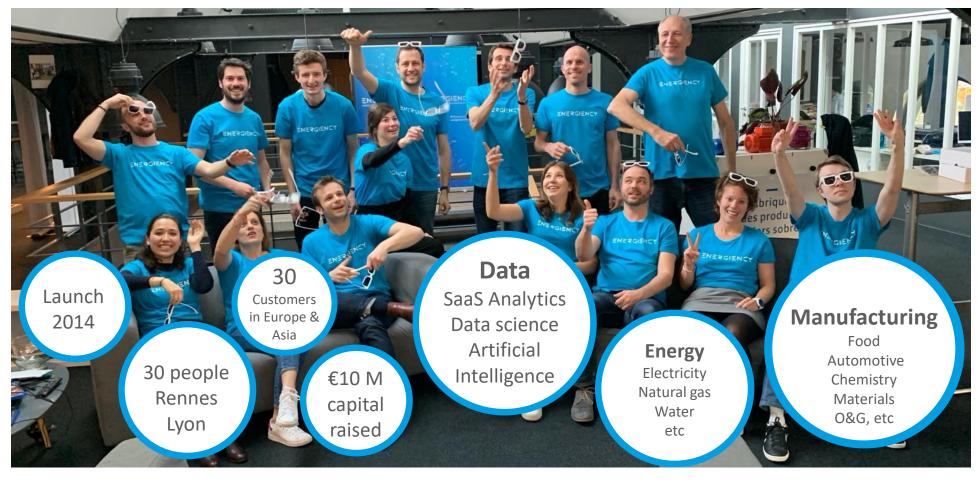
 $\sigma = 14 \text{ kW}$

19,05%

111.

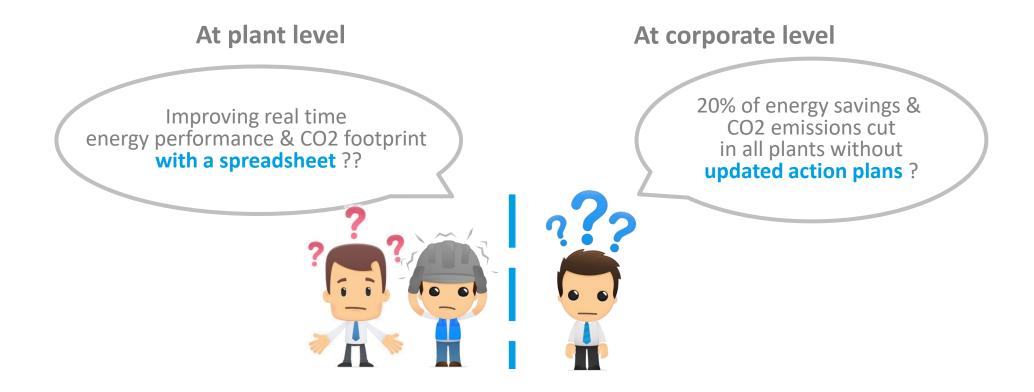
Σ(1/n)

1.

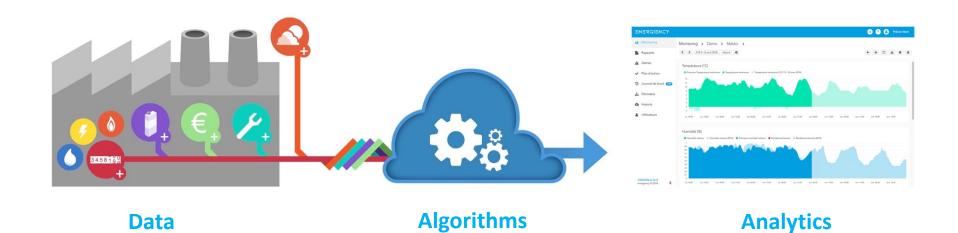

 $\bar{x} = 5,44 \text{ m}^3/\text{u}$

-23 - 1/4

122 Nm³


AFEP

Our ADN: Data + Energy + Manufacturing



D From industry 0.4... to industry 4.0

Wanted: collaborative & smart energy analytics software!

Turning raw industrial data into new energy & CO₂ saving opportunities

Detect & reduce kwh/t and geCO₂/t variability

Paper

04

Challenge

- secure an already excellent control of electricity consumption

Solution

- real time (10 mn) electricity consumption ratio / type paper

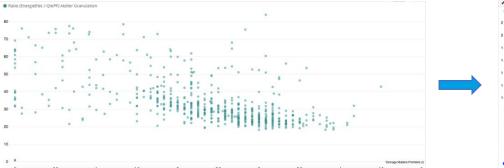
- new target baseline calculated each year

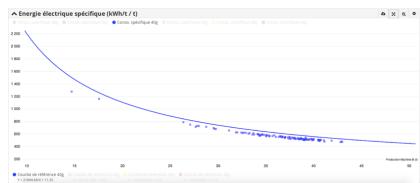
Results

→ 1% proven savings out of a # €50 M/y electricity bill

Food

Challenge


- Improve energy performance control (through monthly gas consumption ratio)


Solution

real time (5 mn) gas consumption ratio calculated / type product
automatic daily reports including energy performance for the 11 families of fertilizers produced

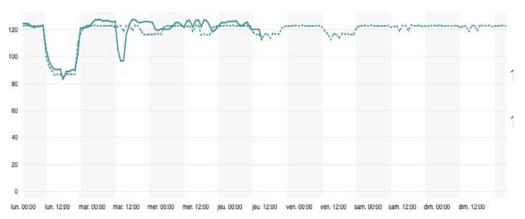
Results

→ 6% potential savings out of a # €1 M/y energy bill

Real time energy & CO₂ accounting

Ratios Gaz/PF (kWh/t) et rendements (%) (horaires) par famille

Ratio Gaz/PF horaire - Amendts Minéraux
Ratio Gaz/PF horaire - K
Ratio Gaz/PF horaire - N


Automated energy & CO₂ performance reports (shift, day, week, ..)

Energy and CO_2 allocation whatever the production level (OF, product, family of products, ..)

	am.z	iun. s							
	Weekly repo	ort on CO2 emissions							
Lun. 23 sept. 2019 05:48 Lun. 30 sept. 2019 05:48									
Weekly Emissions (kgeqCO2)		Target	Emitted	Delta (%)					
Electricity process	Somme	5679,4	5290,22	-6,9					
Compressed air	Somme	2916.6	2149.83	-26,3					
Compressed an									
Veekly KPI - bearing production Electricity process		Target	Realized	Delta (%)					
geqCO2 / kg	Moyenne	76,3	58,74	-23					
geqCO2 / bearing	Moyenne	28,61	28,4	-0,8					
Compressed air									
geqCO2 / kg	Moyenne	3,86	23,89	518,5					
	Moyenne	10.69	11.27	5.4					

		F	apport	jour éne						
	Thu, Mar 14, 2019 5:00 AM - Fri, Mar 15, 2019 4:59 AM									
Famille		Tonnage Produit Fini (T)		Rdt boucle (%)	Ratio Gaz/PF (kWh/t)	Ecart Cible (kWh/t)	TRG ()			
Global	Sum	512	Average	15	326	0	86			
Ν	Sum	0	Average	-	-	0				
Pnat	Sum	92	Average	15	326	0	72			
	Sum	418	Average		-	0	91			
MP	Sum	0	Average	-	-	0				
K	Sum	0	Average	-	-	0	-			
	Sum	0	Average	-	-	0	-			
SP	Sum	0	Average	-	-	0	-			
SPP	Sum	0	Average	-	-	0				
NP	Sum	0	Average	-	-	0	-			
NK	Sum	0	Average	-	-	0	-			
NPK	Sum	0	Average	-	-	0	-			
Orga	Sum	0	Average	-	-	0				
AM	Sum	0	Average	-	-	0				

AI forecast models to reduce energy/CO₂ costs

Paper

Problem to solve

 Improve day ahead nomination accuracy to increase electricity bill rebate

Energiency solution

- Machine learning forecast model based on production planning

Results

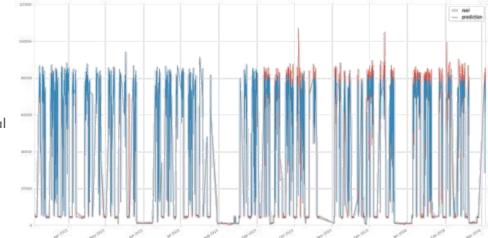
ightarrow 20% rebate increase

Steel

USE CASES

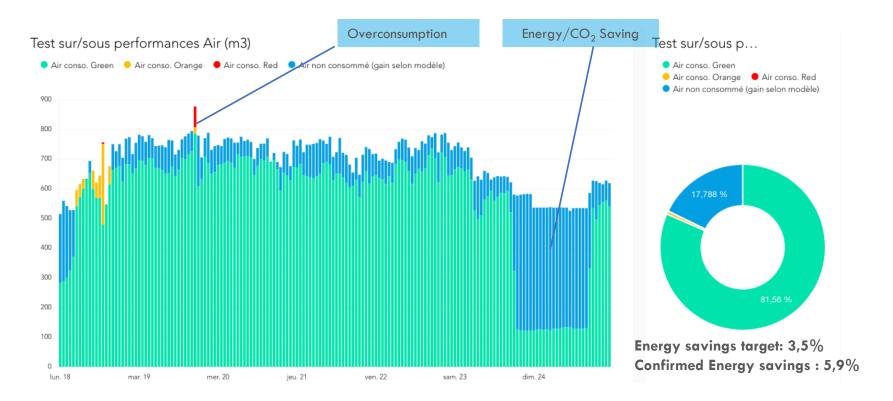
04

Problem to solve


- et up intraday nomination accuracy to reduce imbalance penalty

Energiency solution

- Machine learning forecast model based on production real time and forecast data
- Automatic 1h renomination


Results

 \rightarrow Energy / CO₂ costs reduction potential #%

$\bigcirc \qquad \underbrace{\overset{USE CASES}{04}}_{\text{Energy and } CO_2} \text{ real time digital twin}$

Al real time machine learning models running Display energy drifts for better reactivity

Detect real time drifts & savings for better performance

CONTACT

arnaud.legrand@energiency.com +33 (0)6 70 89 10 36 @energiency

energiency.com